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Implementing nested conditional statements in SIMD machines 

David Middleton 
Institute for Computer Applications 

in Science and Engineering1 

NASA Langley Research Center 

Abstract 
SIMD computers consist of a very large number of processors executing a com- 

mon sequence of instructions. Maintaining the full speedup potential of such ma- 
chines is most sensitive to conditional execution in their programs, regions of code 
where some PES perform no useful work. Techniques are presented for efficiently 
implemen ting nested conditional stat emen ts, specifically if and cusc statements, 
in SIMD machines, while adding minimal specialized hardware. 

1 Introduction 

An SIMD parallel computer typically provides a very large number of processing ele- 

ments*(PEs) at  the cost of constraining them to execute a common sequence of instructions. 

Regions of code requiring conditional execution, such as occur in case and if statements, 

interfere with maintaining the full speedup potential of such machines. While conditional 

statements are being executed, those PES whose data do not satisfy the predicate per- 

form no useful work. This paper describes implementing nested cusc and if statements 

efficiently, both with respect to the number of instructions used and the amount of spe- 

cialized hardware needed by the PES. 

Bruner and Reeves implement nested if statements in the PES of the MPP [BR83] (dis- 

tinguished by use of the where keyword from those performed in the central controller). 

Thinking Machines provide similar facilities in CM Lisp and C*. A specialised hardware 

This work was supported by the National Aeronautics and Space Administration under NASA Contract 
No. NASl-18605 while the author was in residence at ICASE. 
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stack for implementing nested conditional statements effectively has been suggested else- 

where [FMPC]. This work studies implementing nested conditional statements on abstract 

SIMD machines rather than specific ones, in order to determine the appropriate amount 

of hardware support. 

In most SIMD computer designs, each processing element (PE) has some form of 

Enable register which controls whether the globally issued instructions may modify the 

data held in that PE. When an if statement occurs, for example, all PES would evaluate 

the predicate and load the result into their Enable register. Those PES for which the 

predicate is false would effectively ignore subsequent instructions until their Enable bit 

were reset to true. 

In order to nest conditional statements, each PE must maintain a stack of these enable 

bits, with the topmost element indicating whether that PE is active. Section 2 describes 

the transformations to this stack associated with the keywords in if and cuse statements; 

Section 3 presents implementations of these transforms for various SIMD designs; Section 4 

presents variations that use less P E  memory. 

2 The abstract stack of Enable bits 

An if statement takes the form 

if <predicate> then <statement> [else <statement>] endif, 

where <predicate> and <statement> can contain other conditional statements. At  the 

endif, every PE, including those that are disabled, pops its Enable stack. Consequently, 

every PE, including those that are disabled, must push a value on its Enable stack at the 

start of each if statement, A t  the then, every PE replaces its current Enable bit with 

<current cnabfe>A<predicale result> (the value of the predicate alone being undefined 

in disabled PES). If an optional else is encountered, the Enable bit on the top of the 

stack is inverted in those PES that were enabled immediately outside this if statement, as 

indicated by the second stack element. Figure 1 shows the transitions each keyword causes 
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to the different stack configurations that it can encounter. (Those configurations can arise 

from keywords other than the next one on the left; for example, endif may apply to a 

stack most recently changed by a then rather than an else, but the possible configurations 

resulting from each keyword are the same). 

IF THEN P ELSE ENDIF 

Figure 1. Enable stack transitions in an if statement 

A common programming technique for SIMD machines is to enumerate all possible 

states of the PES and to issue instructions for each case after enabling the appropriate 

PES. Consequently, case statements are important. They take the form 

caseif <predicate> then <statement> 
[elseif <predicate> then <statement>] 

[default < stat c m e nt > ] 
endcase. 
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Not Yet Run 

I Previous Enable Bit 1 

Figure 2. Enable stack for case statement 

A ca8e statement can be implemented with if statements, but the depth of the stack grows 

with the number of case branches. This growth can be avoided by exploiting the fact that 

the nested if statements all terminate together. 

Within the scope of a case statement, the PES may be in one of four states: (1) en- 

abled and performing one of the branches of the case statement (or evaluating a predi- 

cate); (2) disabled, not yet having performed a branch; (3) disabled and having already 

performed a branch; and (4) disabled by a conditional statement enclosing the case state- 

ment. States 3 and 4 are equivalent until the case statement terminates and the PES in 

state 3 are re-enabled. PES in state 2 change to state 1 right before a predicate is evaluated, 

that is, at an elseif or default, and change back to state 2 at the then if the predicate is 

false. PES in state 1 change to state 3 after performing their branch, that is, at an elseif 

or default. 

A case statement uses two bits in the Enable stack as shown in Figure 2; the new 

Enable bit which distinguishes state 1 from the others, and a Not-Yet bit which distin- 

guishes state 2 from states 3 and 4. Section 4 presents an alternative implemention of case 

statements that only pushes one bit onto the Enable stack. 

Figure 3 shows the transitions associated with each keyword in a case statement, the 

various stack configurations being labeled with the corresponding PE state. A caseif 
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Figure 3. Enable stack transitions in a case statement 

twice duplicates the Enable bit as it exists immediately prior to the case statement, and 

an endcase removes two elements to return the stack to its initial configuration. At a 

then, the predicate result replaces the Enable bit in enabled PES, or equivalently, the 

logical and of the Enable bit and the predicate result replaces the Enable bit in all PES. 

Two actions occur a t  an elseif. First, PES in state 1, having now finished their branch 

of the case statement, change to state 3. Second, PES in state 2 change to state 1 in 
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order to evaluate the subsequent predicate. These actions are accomplished by clearing 

the Not-Yet bit in enabled PES, and then copying the Not-Yet bit to  the Enable bit in all 

PES. Default is logically equivalent to "elseif true then" which reduces to elseif. 

3 Implementing the abstract stack in actual machines 

The abstract stack described above is now implemented for realistic SIMD machines, 

with the twin aims of providing speed while requiring minimal additional hardware. The 

purpose is both to show how these conditional statements can be implemented in SIMD 

machines that are already designed and to suggest the appropriate amount of conditional- 

statement-specific hardware to be added to new designs. 

We start with a very simple model of SIMD computer under the assumption that SIMD 

machines with less hardware would need to simulate the Enable stack anyway, and that 

their best approach would depend on the specific instructions available, and the related 

data paths among the PE registers and memory. 

We do not consider the specific instructions necessary for evaluating predicates. AI- 

though the time spent evaluating predicates probably dominates the housekeeping costs 

associated with maintaining the Enable stack, the target applications dictate the impor- 

tant data types and so the common predicates'. The original motivation for this study 

was a proposal involving specialized hardware support for the Enable stack itself, rather 

than the general mechanism which already support predicate evaluation. 

Typical SIMD machines use a one-address instruction format: each instruction issued 

by the central controller epecifies an operation, a single address into the local memory 

' We also assume that the disabled PEs do not affect the evaluation of the predicate for the enabled 
PES; for example, if the predicate involves communication operations or global reductions, such M the 
IFANY statement in the MPP, then the disabled PEE do not alter the result. 
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of each PE, and, implicitly, one or more special purpose registers in each PE’s ALU2. 

One of these, the Enable register, must be set for any other register or memory location 

to be affected by the instruction. That is, instructions affecting the Enable register are 

performed in all PES, while instructions affecting other PE state are performed only in 

PES whose Enable register is set. We assume predicate results reside in another register, 

P, that can perform arbitrary logical operations (as in the MPP). 

The topmost element of the Enable stack resides in the Enable register; the rest are 

stored in the local memory of a PE. The Enable stacks have the same height at all times, 

allowing a common stack pointer to be maintained by the central controller. Local ad- 

dressing by individual PES, as provided by the ILLIAC IV and the Connection Machine 2, 

provide no gains to implementing these stacks. 

This first model of SIMD machine can implement the various keywords as shown 

below. Each keyword (with instruction count for comparison) is followed by the instruc- 

tions for the PES. Parentheses distinguish addresses into PE memory from PE register 

names. The expression within the parentheses is computed by the array controller concur- 

rently with its issuing instructions and may involve side-effects such as pre-incrementing 

or post-decrementing the Enable stack pointer, SP. The prefixes global and masked show 

explicitly whether the operation occurs in all PES or only those whose Enable register is 

set; they are redundant for this model since global is equivalent to the destination being 

the Enable register. 

The difficulty for this model lies in saving the Enable register, which is needed to 

duplicate the top of the Enable stack for if and caseif, and to  generate the new Enable bit 

from the old for then and else. Since writes do not occur in PES whose Enable register 

is clear, saving the Enable register requires that the destination be cleared beforehand 

It seems likely that SIMD computers would follow the same evolution of other classes of computers and 
acquire multiple general purpose registers. The model described here reflects current SIMD designs. 
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(effectively using two instructions to save the Enable register, one when it is clear and a 

second when it is set). A program using these statements must preclear the stack a t  the 

outset (and during execution if the stack overflows). 

if (1) 

then (3) 

else (e) 

endif (2) 

caseif (2) 

then (3) 

elseif (2) 

masked (+SP) 

masked 
global 
masked 

masked 
global 
masked 
masked 
global 
masked 

(SP+l) 
Enable 
(SP+ 1) 

(SP+l) 
Enable 
P 
(SP+l) 
Enable 
(SP+ 1) 

global Enable 
masked (SP-) 

masked (+SP) 
masked (+SP) 

masked (SP) 
global  Enable 

endcase (3) global Enable 
masked (SP-) 
masked (SP-1 

+- Enable 

4-P 
+- (SP+l) 
4-0 

+- Enable 

+- (SP) 
t (SP+l) 

4- (SP+I) 
4-P 

t o  
+ (SP) 
4-0 

t Enable 
+- Enable 

+-0 
+- (SP) 

+- (SP-2) 
4-0 
t o  

;; Push previous enable (E Enable reg) onto 
;; PE mem. Use 1 if no path from Enable. 

;; Unchanged if Enable not set. 
;; Enable t Enable A P. 
;; Clear Stack element. 

;; Can use 1 instead of Enable. 
;; second stack element 
;; Invert top of memory stack 
;; iff second stack element true. 
;; Reload Enable. 
;; Reset stack. 

;; Push Previous Enable (E Enable reg). 
;; Push Not Yet (E Enable reg). 

;; As above. 

;; Clear Not Yet in memory. 
;; Load Not Yet into Enable. 

;; Clean up stack: clear and pop Not Yet; 
;; clear and pop Current Enable location. 

Endif and endcase acquire an additional one or two instructions respectively to main- 

tain the unused stack entries at zero. Then requires moving the predicate result from the 

P register to  the Enable register, but for this model, the value of the P register is unde- 

fined in disabled PES (even if the Enable register were combined into the predicate result). 

Then takes the logical product of the Enable and P registers by performing a masked 

store of P into a previously cleared location (for which the stack is convenient). Else 
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conditionally inverts the Enable register according to a memory location, specifically the 

second element of the Enable stack. 

An alternative approach to saving the Enable register under this model is to duplicate 

its value on the Enable stack (making that one element deeper). Such an approach might 

also be necessary for specific designs (like the MPP) whose Enable register is not easily 

accessible. Any new value computed for the Enable register is first pushed on the stack 

before being loaded. The actions for the keywords become 

if (1) 

then (2) 

else (4) 

endif (2) 

caseif (2) 

then (2) 

elseif (4) 

masked (+SP) 

masked (SP) 
global  Enable 

global 
masked 
masked 
global  

global  
masked 

masked 
masked 

Enable 
P 
(SP) 
Enable 

Enable 
(SP- 1 

(+SP) 
(+SP) 

masked (SP) 

masked (SP- 1) 
global  Enable 
masked (SP) 

endcase (3) g lobal  Enable 
masked (SP-) 
masked (SP-) 

t Enable 

+ P  
+ (SP) 

+- (SP-1) 
+ (SP) 
+ P  - (SP) 
c (SP-1) 
4-0 

t Enable 
+- Enable 

c o  

4-0 
+- (SP-1) 
t Enable 

+- (SP) 
4-0 
- 0  

;; Duplicate new stack top from Enable reg. 

;; Update stack top in memory 
;; and in Enable register. 

;; second stack element 
;; Stack top in memory 
;; only changed where second stack elt. true. 

;; Push Not Yet and Current Enable. 
;; (order reversed from previous set) 

;; As above. 

;; Clear stack top in memory: state 1 -+ 3. 
;; (Was part of ‘then’ in previous set). 
;; Clear Not Yet in memory: state 1 -+ 3. 
;; Load Not Yet: state 2 -+ 1. 
;; Update stack top in memory. 

;; Clear and pop Current Enable location. 
;; Clear and pop Not Yet location. 

If statements require only 9 instructions instead of 12 since there is less need to store 

the Enable register before changing it. However, case statements aquire an additional 

instruction per branch to maintain the duplicate top of stack. 

8 



Adding special purpose hardware to each PE can reduce this overhead for conditional 

statements. The second model of SIMD computer to be considered extends the first model 

by adding an Enable field to the instruction format, as the MPP does for many instructions. 

This field closely coincides with the distinction between instructions manipulating the 

Enable stack, which all PES perform, and instructions performing useful work, which only 

some PES perform, according to  their Enable register. This extension effectively adds 

new instructions purely for manipulating the Enable stack; however, the hardware cost of 

“decoding” the Enable field is negligible. 

Each P E  determines whether its memory and registers (now including the Enable reg- 

ister) can be updated according to the logical sum of this instruction bit and the contents 

of the Enable register. The prefixes global and masked now refer to  this Enable field of the 

instruction: global means the bit is set and the instruction takes effect in all PES; masked 

means the bit is clear, so the instruction’s affect depends on each PE’s Enable register. A 

tick emphasizes those instructions exploiting this facility. 

if (1) global‘ 

then (I) masked‘ 

else (4) global‘ 
global 
masked 
global 

endif (1) global 

caseif (2) global‘ 
global’ 

(+SP) 

Enable 

P 
Enable 
P 
Enable 

Enable 

+- Enable 

+ - P  

Enable 
(SP-1) - 

4 - P  
4 - P  

t (SP-) 

e Enable 
4- Enable 

;; copy stack top to memory 

;; Enable +- Enable and P. 

;; Assumes paths exist between P and Enable. 
;; Load second stack element. 
;; P only changed where 2nd element true. 
;; This sequence assumes P not live. 

;; Push Previous Enable. 
;; Push Not Yet. 

then (1) ;; As above. 

elseif (2) masked (SP) 4-0 ;; Clear Not Yet in memory. 
global Enable +- (SP) ;; Load Not Yet. 

endcase (1) (SP-) ;; concurrently in array controller. 
global Enable c (SP-) 
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With this extension, there is no need to preclear the Enable stack nor to duplicate the 

Enable register on the memory stack. Case statements require 3 instructions per branch 

instead of the 5 or 6 required in the previous implementations. Except for else, the if 

statement keywords all reduce to one instruction; if statements require 7 instructions 

compared with 12 or 9 above. 

Else remains unwieldy which suggests adding further special instructions. The nec- 

essary operation is Enable +- Second A Enable, where Second is the P E  memory location 

holding the second Enable stack element. Since Enable implies Second, the above expres- 

sion is equivalent to Enable t SecondeEnable (e being exclusive or). The MPP exploits 

this to use a special facility which tests the equality of its Enable register, G, and its 

logic register, P. The MPP generates the value P = G which is equal to FCB G and so can 

implement else with 

else (2) global' P +- (SP-1) 
global Enable +- P=G. 

A better approach is to make the Enable register a general purpose boolean register, 

supporting all logical combinations of the Enable register with another source; this allows 

flexibility for implementing other conditional statements in the future. The action a t  an 

else becomes 

else (1) global' Enable e Enable A (SP), 

and the if statement reduces to  four instructions of overhead, one at  each keyword. 

4 Implementing the abstract stack densely 

Some current SIMD machines are constrained by the amount of memory available in 

each PE. Two methods are presented for reducing the space used to  implement nested 

conditional statements. 

The first technique for saving space is to  replace the stack of Not-Yet bits with a single 

statically allocated bit. As case statements nest, the stack of states in each P E  follows a 
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particular pattern. A t  a caseif, PES in states 2, 3, and 4, push a new state 4 on their 

Enable stacks. PES in state 1 push a new state 1 which may be overwritten by states 2 

or 3 during the statement’s execution. Thus, every Enable stack consists of zero or more 

1 states, a single state 1, 2 or 3, and zero or more 4 states. Since the Not-Yet bit is always 

zero in PES in state 4 and always one in PES in state 1, it need only exist explicitly for 

the Enable stack entry that is in state 1, 2 or 3. 

The Not-Yet bit is only read at occurrences of elseif, to distinguish PES in state 2 

from the others; it is only written a t  a caseif where it is set on being allocated, or an 

elseif where it is cleared in enabled PES. The actions associated with the case state- 

ment keywords are modified so that PES in state 4 neither write nor read their Not-Yet 

bit, in order to leave the Not-Yet bit unchanged in any PES having entered states 2 

and 3. The operation Enable + Not-Yet, associated with an elseif, is replaced with 

Enable +- Not-Yet A Previous Enable. The Previous Enable is one in PES in states 2 

and 3, so their operation remains unchanged. The Previous Enable is zero in PES in 

state 4, so the Not-Yet bit is irrelevant. Assuming instructions with an enable field, the 

actions associated with the different keywords become 

caseif (2) masked (Not-Yet) +- 1 ;; initialise for PES in state 1 
global’ (+SP) t Enable ;; push Previous Enable on memory stack 

then (I )  masked’ Enable +- P 

elseif (3) masked (Not-Yet) c 0 ;; clear Not Yet in memory 
global  Enable + (Not-Yet);; load Not Yet 
masked’ Enable +- (SP-1) ;; A Previous Enable 

endcase (I) global  Enable + (SP-) 

PES in states 2 and 3 may push state 4’s on the stack; this will have no effect on 

the Not-Yet bit. PES in state 1 do not use their Not-Yet bit without either setting it 

immediately beforehand a t  an elseif, or re-initialising it at a more deeply nested caseif. 

Thus, any changes made to the Not-Yet bit by other nested case statemeri I r: have no affect. 
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The second technique for saving space replaces the Enable stack with a count of the 

number of disabling entries. This approach needs only logarithmic instead of linear space 

a t  the cost of taking logarithmic rather than constant time. This approach is unattractive 

because programs suited to SIMD machines are unlikely to use conditional statements 

nested deeply enough to  justify the added delay of performing bit-serial arithmetic; nev- 

ertheless, the central controller need only perform addition to  the necessary length, since 

the maximum possible count is known at all times. 

A method is shown for the case statement; if statements can be implemented by in- 

terpreting them as 

caseif <predicate> then <statement> [default <statement>] endcase, 

which is as efficient as techniques designed specificalIy for the if and allows the two state- 

ments to be used together. 

Each PE holds the following values: Enable, either the register or a separate memory 

location if the instruction set causes frequent saving to  be necessary (we assume the second 

SIMD model in this section); Not-Yet, a single static memory location; and Count, the 

number of state 4’s on the abstract Enable stack. An additional variable, Zero, is redundant 

but improves efficiency. The following values encode the different states: 

State Enable Not Yet Count Zero 

state 1 
state 2 
state 3 
state 4 

1 - 0 1 
0 1 0 1 
0 0 0 1 
0 - n > O  0 

Not-Yet is 1 for PES in state 2, not having been altered since the caseif a t  this level 

initialised it, and 0 for PES in state 3, not having been altered since an elseif at this 

level cleared it. Not-Yet is undefined for PES in state 1 because a preceding, more deeply 

nested, case statement may have altered it, and is undefined for PES in state 4, depending 

on whether this state occurs above a state 2 or a state 3. 
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The code for manipulating these values at the different keywords becomes 

caseif(1) masked (Not-Yet) t 1 ;; set if state 1; no cahnge if state 4. 

(# bit#) global' Half Add (Count) , Enable ;; increment counter in disabled cells 
(I)  global' (Zero) + Enable 

then (1) masked' Enable +- P ;; as before. 

elseif (9) masked (Not-Yet) t 0 ;; clear Not Yet as before 
global Enable t (Not-Yet);; Enable +-Not-Yet 
masked' Enable t (Zero) ;; A Previous Enable 

endcase (1) global Enable t (Zero) ;; states 1,2 and 3 -+ 1. 
(# bits) global' Decr (Count), (Zero) ;; Pop a state 4; perhaps reset Zero. 

The subroutine HalfAdd, executed with the enable field set in all its instructions, adds one 

bit to a number, in this instance, incrementing Count in disabled PES. The subroutine 

Decr subtracts the inverse of a bit from a number, in this case, decrementing Count in 

disabled PES. As a side-effect, it sets Zero when appropriate. These two operations are 

merged together to exploit possible arithmetic operations that may be provided by the 

SIMD machine. For example, the MPP provides single instructions that perform half and 

full adds; the test for a zero result can be interleaved with these operations as the bits 

pass through the arithmetic registers. 

5 Conclusions 

The efficient execution of nested conditional statements on SIMD machines requires 

little additional hardware to support the consequent Enable stack. Special purpose stack 

hardware is not required; the stack can be stored in the general P E  memory and manip 

ulated by standard instructions. An Enable field in the instruction helps noticeably, as 

does, to a lesser extent, providing general logical operations on the Enable register. 

Separating the abstract Enable stack and its evolution from the actual machine facilities 

greatly aided designing the instruction sequences for the if and case statements. This 

approach should be used for implementing these statements on other SIMD designs or for 

implementing other conditional statements in general. 
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In the final set of instructions, the Enable instruction field, which is manipulated and 

issued by the array controller, rather than being part of the PES, is applied to subroutine 

calls. This raises issues for the design of the array controller and software techniques as 

regards the several side-effects that a subroutine may have. 
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